A Software Reliability Cost Model Based on the Shape Parameter of Lomax Distribution
نویسنده
چکیده
Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The cost comparison problem of the Lomax distribution reliability growth model that is widely used in the field of reliability presented. The software failure model was used the infinite failure non-homogeneous Poisson process model. The parameters estimation using maximum likelihood estimation was conducted. For analysis of software cost model considering shape parameter. In the process of change and large software fix this situation can scarcely avoid the occurrence of defects is reality. The conditions that meet the reliability requirements and to minimize the total cost of the optimal release time. Studies comparing emissions when analyzing the problem to help kurtosis So why Kappa efficient distribution, exponential distribution, etc. updated in terms of the case is considered as also worthwhile. In this research, software developers to identify software development cost some extent be able to help is considered.
منابع مشابه
Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملOn Concomitants of Order Statistics from Farlie-Gumbel-Morgenstern Bivariate Lomax Distribution and its Application in Estimation
‎In this paper‎, ‎we have dealt with the distribution theory of concomitants of order statistics arising from Farlie-Gumbel-Morgenstern bivariate Lomax distribution‎. ‎We have discussed the estimation of the parameters associated with the distribution of the variable Y of primary interest‎, ‎based on the ranked set sample defined by ordering the marginal observations...
متن کاملThe Exponentiated Lomax – Rayleigh (E-LR) Distribution, Properties and Applications
In this paper a new four-parameter lifetime distribution named “the exponentiated Lomax – Rayleigh (E-LR) distribution” has been suggested that it has an increasing hazard rate for modeling lifetime data. The Lomax distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and queuing problems and biological sciences. In this paper Firstly, the mathematical ...
متن کاملSome statistical inferences on the upper record of Lomax distribution
In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.
متن کاملStatistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
متن کامل